Hyers-Ulam Stability of A Kind of Polynomial Equation

نویسنده

  • Zhihong Zhao
چکیده

In this paper, we prove the stability in the sense of Hyers-Ulam stability of a kind of polynomial equation. That is, if y is an approximate solution of the polynomial equation any +an−1y n−1+· · ·+a1y+a0 = 0, then there exists an exact solution of the polynomial equation near to y. Mathematics Subject Classification: Primary 39B82. Secondary 34K20, 26D10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam stability of Volterra integral equation

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

متن کامل

Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation

In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.

متن کامل

Hyers-Ulam-Rassias stability of a composite functional equation in various normed spaces

In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.

متن کامل

Hyers–ulam Stability of a Polynomial Equation

The aim of this paper is to prove the stability in the sense of Hyers–Ulam stability of a polynomial equation. More precisely, if x is an approximate solution of the equation x + αx + β = 0, then there exists an exact solution of the equation near to x.

متن کامل

Hyers-Ulam Stability of Functional Equationf(3x) = 4f(3x − 3) + f(3x − 6)

The functional equation f(3x) = 4f(3x−3)+f(3x− 6) will be solved and its Hyers-Ulam stability will be also investigated in the class of functions f : R → X , where X is a real Banach space. Keywords—Functional equation, Lucas sequence of the first kind, Hyers-Ulam stability.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016